

President: Pier Luigi Zinzani Co-President: Michele Cavo Honorary President: Sante Tura Bologna, Royal Hotel Carlton October 1-3, 2018

BOLOGNA, ROYAL HOTEL CARLTON

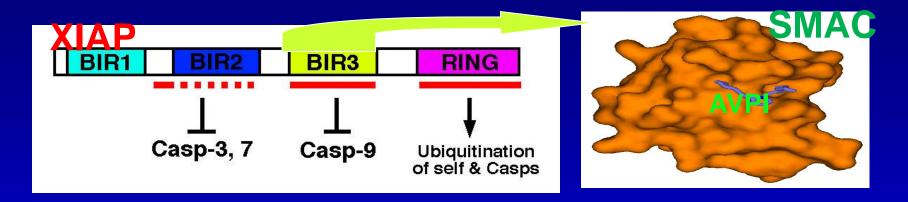
Disclosures of John Mascarenhas

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Incyte	x					х	
Novartis	x						
Promedior	x						
CTI Biopharma	х						
Roche	x					x	
Merck	x						
Janssen							

New Drugs and Combination Therapy Approaches in Myeloproliferative Neoplasms

John Mascarenhas, MD Associate Professor of Medicine Icahn School of Medicine at Mount Sinai

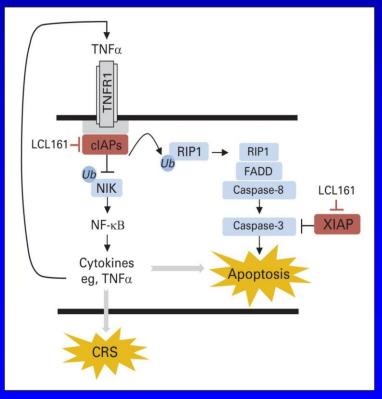
Icahn School of Medicine at **Mount** Sinai Bologna 2018


(aggressivo) Agenda

- SMAC Mimetic
- Activin Ligand Trap
- Telomerase Inhibitor
- Pentraxin-2 analogue
- TGF-β inhibitor
- MDM2 inhibitor
- Combination JAK inhibitor
 - PI3K inhibitor
 - BET inhibitor

JAK Inhibitors and Status of Development in Myelofibrosis as lead Indication

SMAC Mimetics



Bind to cIAP1, cIAP2, and XIAP

- Cause rapid autoubiquitinylation and proteasomal degradation of cIAPs
- Relieve caspase repression by XIAP

Heaton et al. Leuekmia. 2018 Apr 18

Courtesy: Bing Carter, PhD

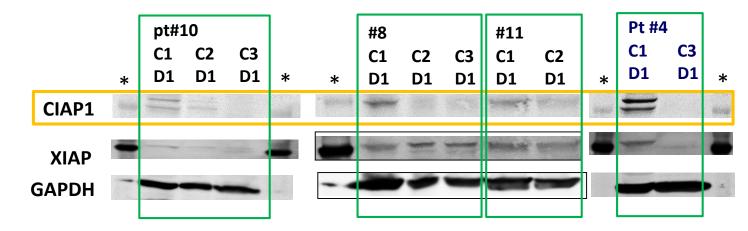
Treatment Schema: LCL161 for MF

Pemmaraju et al ASH 2017

LCL161 in MF: Overall Responses

No of

Objective Responses	patients	
-Clinical Improvement (CI):		
CI (Symptom)	7	
CI (Anemia)	5	
CI (Spleen)	1	
Cytogenetic Remission (CR)	1	

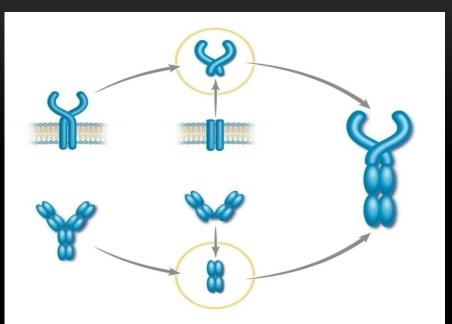

- Response Criteria: IWG-MRT 2013 (Blood 2013;122(8):1395-1398)
- All responses must last for ≥ 12 weeks to qualify

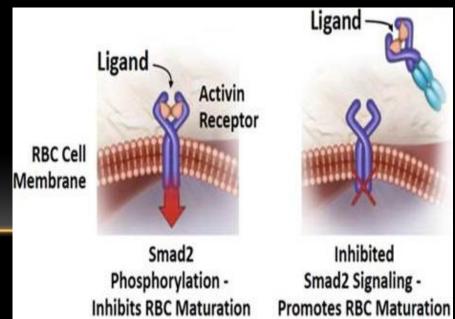
LCL161 in MF: Toxicities

Grade 1/2 AEs, ≥10%, Related	N (%)
Non-Hematologic Grade 1/2	
Fatigue	21 (55)
Nausea/Vomiting	19 (50)
Pain	13 (34)
Dizziness/Vertigo	12 (32)
Pruritis	11 (29)
Diarrhea	8 (21)
Fever/flu-like syndrome	8 (21)
Skin eruption/rash	6 (16)
All Grade 3/4 AEs, Related	N (%)
Non-Hematologic Grade 3/4 AE	
Syncope	2 (5)
Nausea/Vomiting	1 (3)
Hematologic Grade 3/4 AEs, Related	
Thrombocytopenia	3 (8)
Anemia	2 (5)

LCL161 in MF: On Target Reduction of CIAP1 in Responding Patients

Total: 10 responders (N=2 lack of adequate samples and N=4 still under the treatment)


Non-responders			NR/SE)			NR/S	D	NR/SD					
	OCI- AML3	*	#14 KG C1	C2	С3	*	#15 LH C1	l C2	С3	*	#9 Fł C1	H C2	C3	*
CIAP1	-	the state	1	J	(const)	News.	Ţ	*						anas
XIAP	-	-	1	-	-	-	1	-		•				•
GAPDH	=		-	-	-		Y	-	-	• -	2	-	-	-


OCI-AML3, positive control . *, molecular weight markers

Sotatercept in MF

SOTATERCEPT

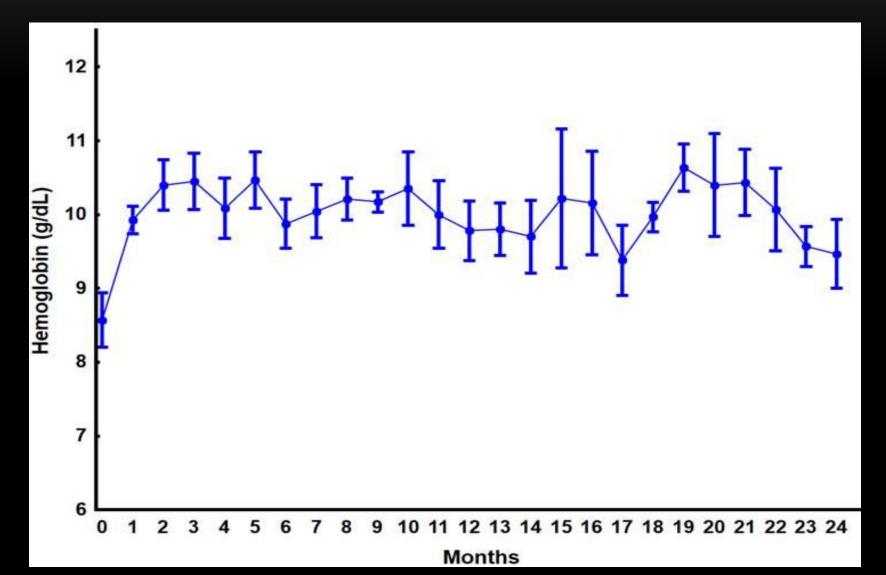
- A first-in-class activin receptor IIA (ActRIIA) "ligand trap"
- Fusion protein consisting of the extracellular domain of ActRIIA conjugated to the Fc fragment of human IgG1

SOTATERCEPT MECHANISM OF ACTION AND STUDY RATIONALE

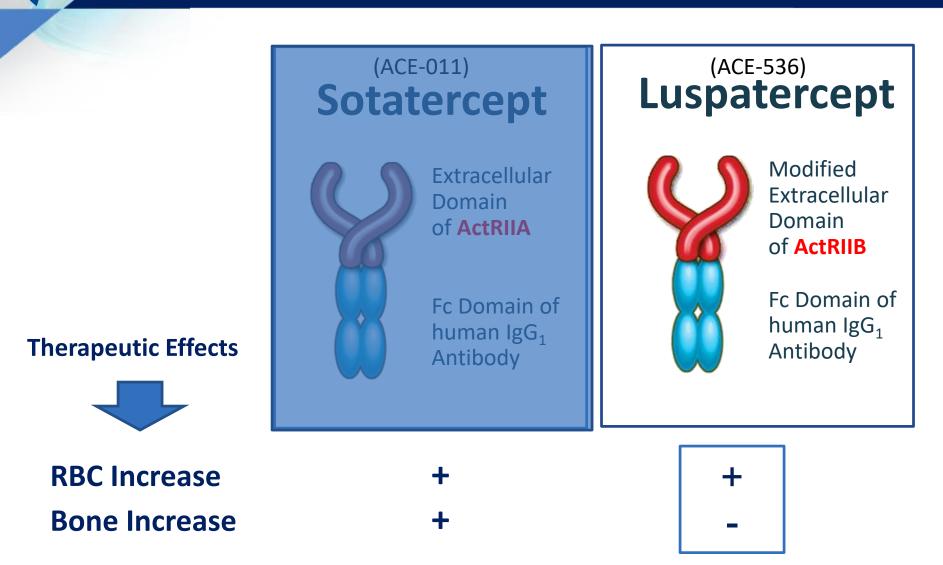
- Sequesters ligands of TGF-ß superfamily secreted by bone marrow stromal cells, especially GDF11
- Removal of GDF11 relieves suppression of terminal erythropoiesis
- Improves erythropoiesis in preclinical models of ßthalassemia, Diamond Blackfan anemia, and in hepcidin transgenic mice
- Effective against anemia of lower risk MDS

Iancu-Rubin C et al. Exp Hematol 2013. Carrancio S et al. BJH 2014. Dussiot M et al. Nat Med 2014. Ear J et al. Blood 2015. Langdon JM et al. AJH 2015. Komrokji R et al. ASH 2014.

PHASE II STUDY DESIGN

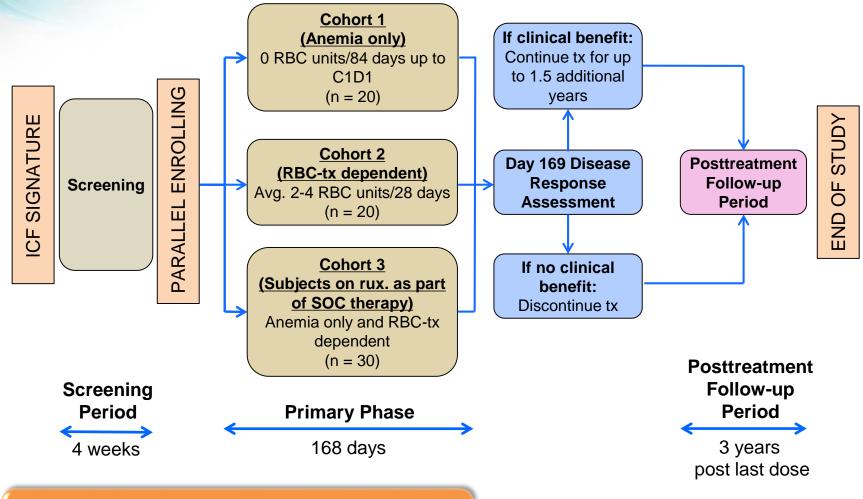

- PMF or post-PV/ET MF, Hgb <10 g/dL x \ge 84 days
- 2 cohorts:
- Sotatercept alone, 0.75 or 1 mg/kg SC q3w
- Sotatercept 0.75 mg/kg SC q3w in subjects on stable dose of ruxolitinib
- Response (on study x ≥84 days):
- > Anemic subjects: ≥1.5 g/dL \uparrow from baseline x ≥84 d
- Transfusion-dependent subjects: achievement of transfusion independence per IWG MRT 2013 criteria

Sotatercept in MF


ADVERSE EVENTS POSSIBLY RELATED TO SOTATERCEPT (N = 35)

Adverse event	Grade	No. of patients
Hypertension	3	3
	2	2
Pain (joints/muscle)	3	1
	2	1
	1	1
Elevated UMACR	1	2
Limb edema	1	1
Headache (in the context	2	1
of HTN)	1	1
Nausea	1	1

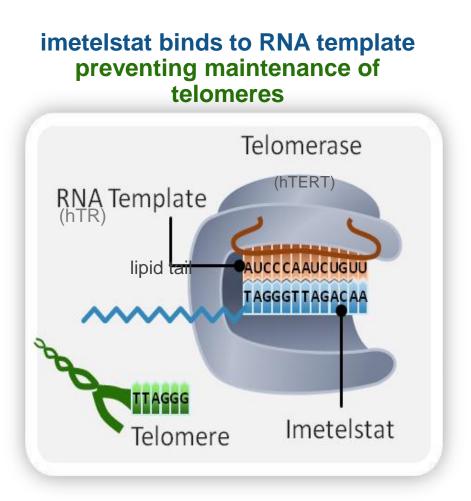
MEAN HEMOGLOBIN OVER TIME IN RESPONDERS (N=10)


Sotatercept and Luspatercept: Novel Ligand Traps for TGF- β Superfamily Ligands

ACCELERON

lgene

Study Design: Luspatercept Phase 2 in MPN-Associated Myelofibrosis



The **Steering Committee** will review all available safety and efficacy data and will serve in an advisory capacity to the Sponsor.

ACCELERON

lgene

Imetelstat: First in Class Telomerase Inhibitor

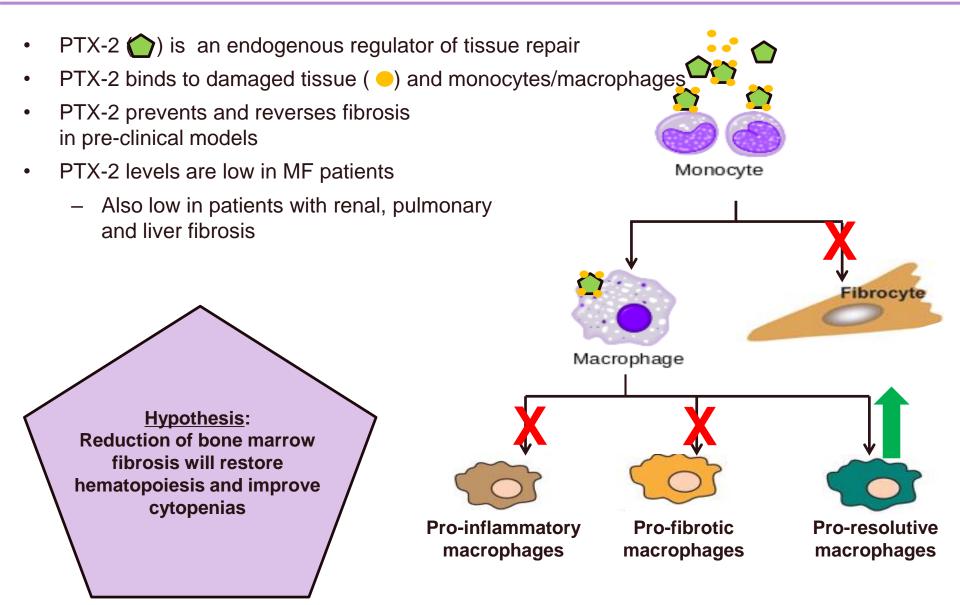
- Proprietary: 13-mer thiophosphoramidate oligonucleotide complementary to hTR, with covalently-bound lipid tail to increase cell permeability/tissue distribution
- Long half-life in bone marrow, spleen, liver (estimated human t¹/₂ = 41 hr with doses 7.5 – 11.7 mg/kg);
- Potent competitive inhibitor of telomerase: IC50 = 0.5-10 nM (cellfree)
- **Target:** malignant progenitor cell proliferation

Primary Endpoint: Overall Response by IWG-MRT

	N = 33 (%)	
Overall Response (CR+PR+CI)	12 (36.4%)	→ CR/PR/CI: 36.4%
Complete Remission (CR)	4 (12.1%)	- CR/PR: 21.2%
Partial Remission (PR)	3 (9.1%)	
Clinical Improvement (CI) by Anemia	1 (3.0%)	
Clinical Improvement (CI) by Spleen	4 (12.1%)	
Stable Disease (SD)	21 (63.6%)	
Spleen Response (by palpation lasting ≥ 12 weeks)	8/23 (34.8%)	
Transfusion dependent becoming transfusion independent	4/13 (30.8%)	


• All 4 CR patients achieved reversal of BM fibrosis and 3 complete molecular response.

• 3 CR/PR patients who were transfusion dependent at baseline became transfusion independent

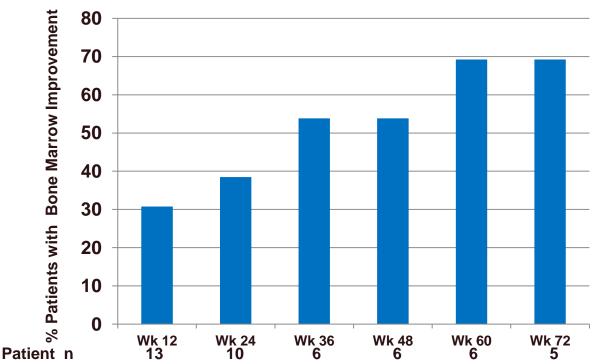

• 3 CR/PR patients with splenomegaly at baseline achieved splenic response

Tefferi et al. N Engl J Med. 2015 Sep 3;373(10):908-19.


A Randomized, Single-Blind, Multicenter Phase 2 Study to Evaluate the Activity of 2 Dose Levels of Imetelstat in Subjects With Intermediate-2 or High-Risk Myelofibrosis (MF) Relapsed/Refractory to Janus Kinase (JAK) Inhibitor

PRM-151: Recombinant Human Pentraxin-2 (PTX-2)

PRM-151G-101 Stage 1 and Extension

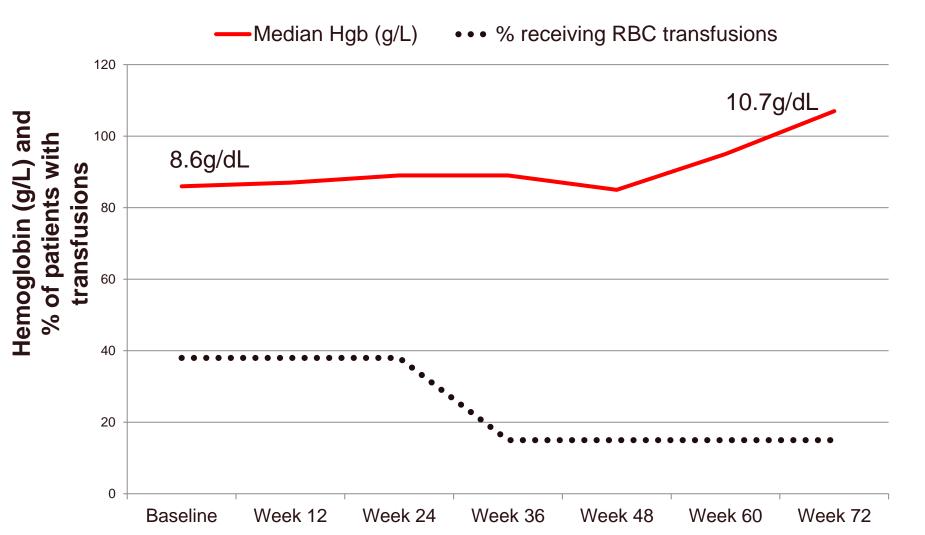

- 24 week treatment period
 - Patients with clinical benefit may continue beyond 24 weeks
- PRM-151 + RUX: stable RUX dose \geq 3 months with no decrease in splenomegaly for \geq 4 weeks
- No eligibility restrictions for anemia, thrombocytopenia, leukopenia, or spleen size

All Possibly Related Adverse Events Through 72 Weeks (n=13)

Adverse Event	Grade 1	Grade 2	Grade 3	Total
ANKLE SWELLING	1			1
DIARRHEA	1			1
ANEMIA			1	1
COUGH NONPRODUCTIVE	1			1
HYPERURICEMIA	1			1
BLURRED VISION	1			1
FATIGUE	2			2
TOOTH INFECTION	1			1
SKIN INFECTION	1			1
HSV INFECTION		1		1
HOT FLASHES	1			1
SWEATING	1			1

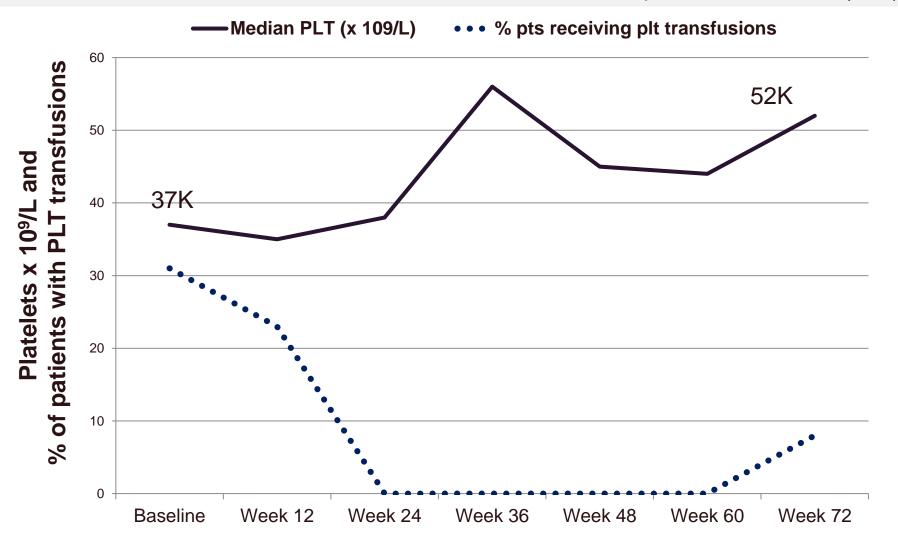
6 SAEs in 4 patients - none related: wound infection, multiple fractures, bladder rupture, bowel obstruction, focal pneumonia, and unspecified infection

Bone Marrow Fibrosis Improvement as Measured by WHO Criteria



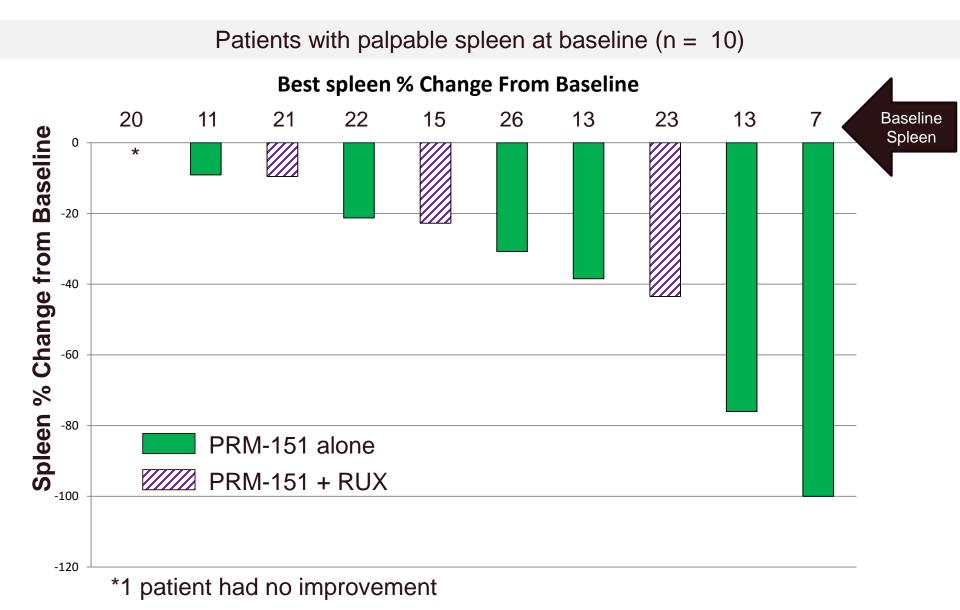
WHO MF Response

- Response assessment by central hematopathologists blinded to patient, treatment and time point. WHO MF Response = % of patients with ≥1 grade reduction in MF score at any time point
- Reduction in BM fibrosis was associated with normalization of bone marrow architecture: Normal erythroid clustering, Normal or decreased myeloid:erythroid ratio, Fewer paratrabecular megakaryocytes


Hemoglobin and RBC Transfusions

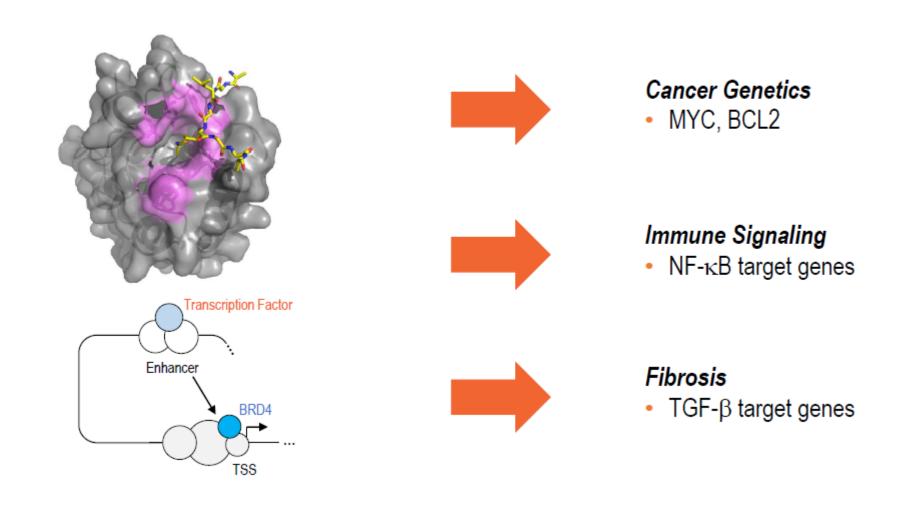
Patients with baseline Hgb < 100 g/L who completed \geq 72 weeks (n=5)

Platelets and Platelet Transfusions


Patients with Baseline Platelets < 100×10^{9} /L who completed ≥ 72 weeks (n=9)

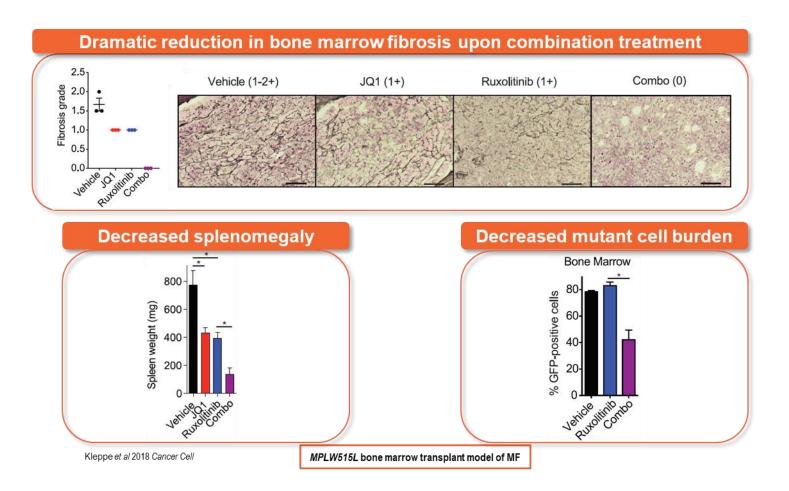
Symptom Improvements MPN-SAF TSS Best % Change from Baseline (n=13)

Spleen Reductions



JAK inhibitor	Combination partner/setting	MPN	Phase	Clinicaltrials.gov identifier
Ruxolitinib	TGR-1202	PV, MF, MDS/MPN	1	NCT02493530
Ruxoilitinib	Idelalisib	MF	1	NCT02436135
Ruxolitinib	INCB050465	MF	2	NCT02718300
Ruxolitinib	Danazol	MF	2	NCT01732445
Ruxolitinib	Thalidomide	MF	2	NCT03069326
Ruxolitinib	Lenalidomide	MF	2	NCT01375140
Ruxolitinib	Azacytidine	MF, MDS/MPN	2	NCT01787487
Ruxolitinib	Panobinostat	MF	1b 1/2	NCT01433445 NCT01693601
Ruxolitinib	Pracinostat	MF	2	NCT02267278
Ruxolitinib	Decitabine	MPN-AML	1/2 1/2	NCT02257138 NCT02076191
Ruxolitinib	PIM447 + LEE011	MF	1	NCT02370706
Ruxolitinib	Vismodegib	MF	1/2	NCT02593760
Ruxolitinib	Navitoclax	MF	2	NCT03222609
Ruxolitinib	Pegasys	MF	1/2	NCT02742324
Ruxolitinib	HSCT	MF	2	NCT01790295
Ruxolitinib	HSCT	MF	Pilot	NCT02917096
Ruxolitinib	AutoSCT	MF	Pilot	NCT02469974

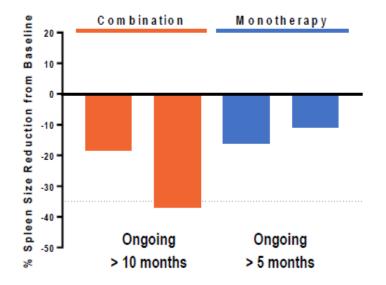
Modified from Mascarenhas et al. Hematology Am Soc Hematol Educ Program. 2015;2015:329-39


BET – Epigenetic "Reader"

Control of Key Oncogenic, Immune, Fibrotic Pathways Leads to Opportunity in Myelofibrosis

Combination of BET and JAK Inhibitors is Efficacious in MF model

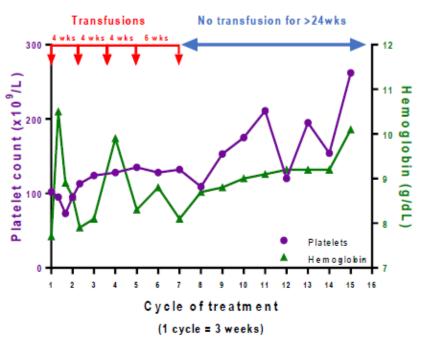
Combination significantly improves spleen weight, fibrosis and tumor burden


CPI-0610 Phase 2 Trial in Myelofibrosis

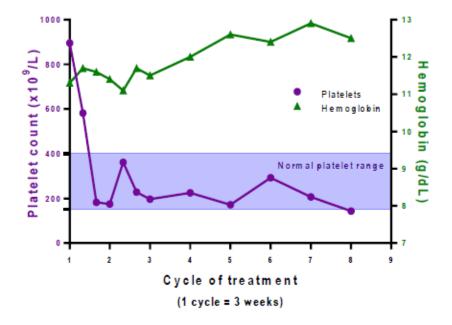
CPI-0610 Myelofibrosis Phase 2 Trial Status Update

Data as of May 25, 2018

Significantly reduced spleen size in all four evaluable patients by MRI

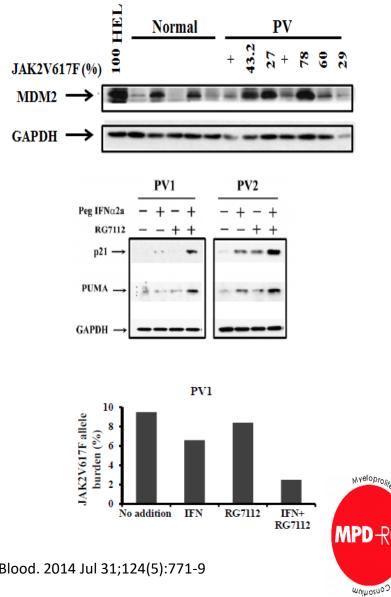

Best % Spleen Size Reduction

- Reduced spleen size
- Symptom improvement
- 1 patient with thrombocytosis and 1 patient transfusion dependent at baseline – both resolved

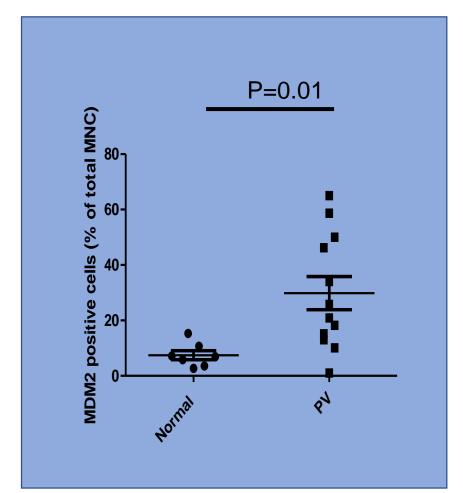

CPI-0160 Improving Hemoglobin Levels and Transfusion Dependence

Data as of May 25, 2018

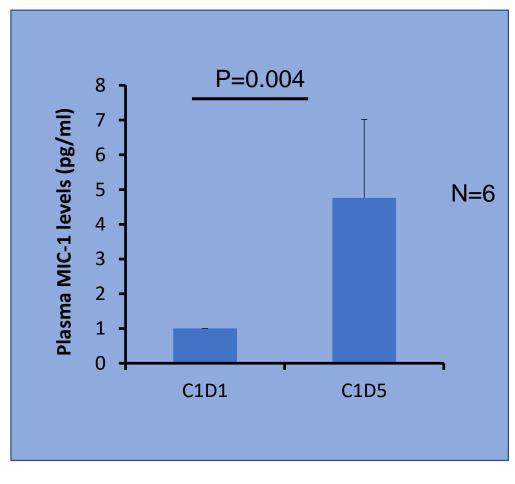
Example: Transfusion independence and improved hemoglobin levels


CPI-0610 Improved Hemoglobin Levels in Each Patient Treated

- Patient treated with CPI-0610 + ruxolitinib combination therapy
- Patient required regular red blood cell transfusions prior to treatment
- Transfusion independent for more than 24 weeks as of May 25, 2018
- Additionally, hemoglobin increased by 2 g/dL and platelet counts improved despite not receiving red blood cell transfusions
- Patient treated with CPI-0610 monotherapy
- Patient had thrombocytosis, at baseline and was refractory to prior treatment with ruxolitinib, a telomerase inhibitor, pembrolizumab and hydroxurea
- Patient's thrombocytosis was accompanied by severe headaches
- Platelet counts normalized after treatment with CPI-0610, and have remained normal for more than 20 weeks as of May 25, 2018
- Patient's severe headaches were resolved after platelets normalized


Background: MDM2 and PV

- PV CD34+ cells contain higher levels of MDM2 compared to normal CD34+ cells
- Low doses of a Nutlin and Peg-IFNα 2a increase p21 and PUMA protein levels in PV CD34+ cells and promote apoptosis
- Treatment with low doses of a Nutlin and Peg-IFNα 2a reduce the numbers of JAK2V617Fpositive cells transplanted in NOD/SCID mice



Baseline MDM2 levels higher in study participants than normal controls

Icahn School of Medicine at Mount Sinai Plasma MIC-1 levels are significantly increased in PV patients following treatment with idasanutlin

Icahn School of Medicine at Mount Sinai

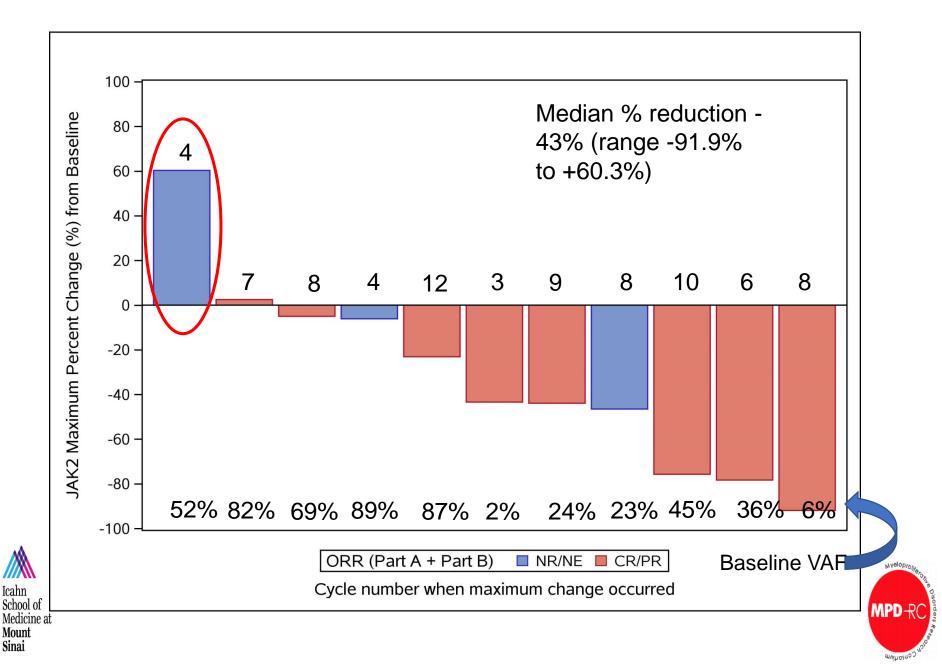
Responses by 2013 ELN-IWG¹ criteria

By 6 cycles of therapy with idasanutlin monotherapy in PART A and combination pegylated interferon-α in PART B

	Not evaluable (NE)	No response (NR)	Partial Response (PR)	Complete Response (CR)	Overall Response (PR+CR)
PART A (n=12)	1#	4	3*	4	7 (58%)
PART B (n=4)^	1+	1	1	1	2 (50%)
			PART A +	PART B ORR	9 (75%)

- # not evaluable due to patient decision to withdraw from study after 4 cycles due to GI toxicity
- *Residual splenomegaly likely due to known portal vein thrombosis, likely a CR (n=1)
- ^4 subjects from PART A that had NR continued on to PART B combination idasanutlin + interferon-α
- + not yet completed cycle 7

School of Medicine at


Mount

Sinai

¹Barosi et al Blood 2013

Driver mutation responses with idasanutlin therapy

Acknowledgements

Mount Sinai

Ronald Hoffman

Xiaoli Wang Vesna Najfeld Joseph Tripodi Anna Rita Migliaccio Marina Kremyanskaya John Roboz Min Lu Luena Papa Daniel Hathaway Camelia Iancu-Rubin John Mascarenhas Jiajing Qiu Goar Mosoyan Eran Zimran Bruce Petersen Myron Schwartz Lina Jung Alicia Orellana

Mayo Clinic Scottsdale

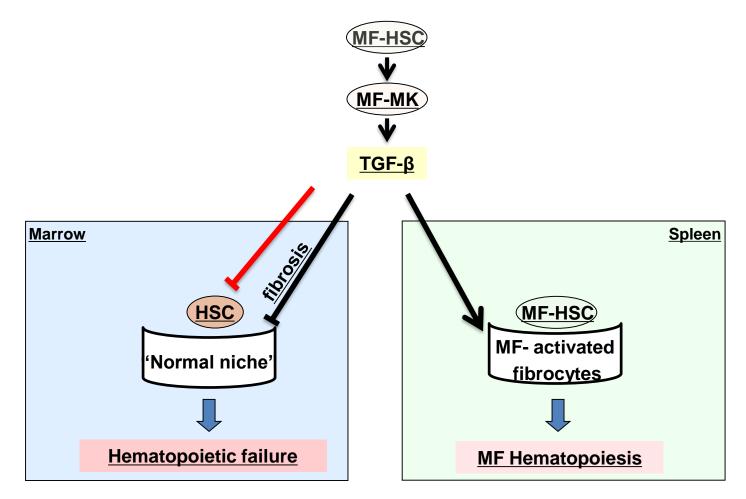
Ruben Mesa Amylou Dueck Heidi Kosiorek

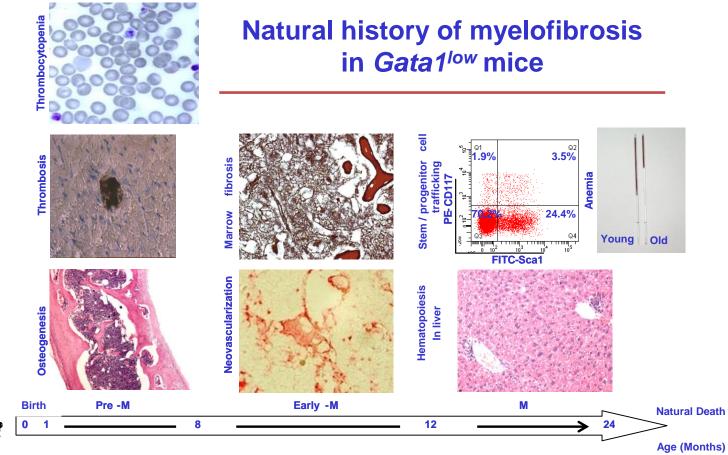
<u>University of Utah</u> Mohammed Salama

<u>New York Blood Center</u> Rona Weinberg Xu Wu <u>MSKCC</u> Ross Levine Raajit Rampal Franck Rapaport

MPD-RC

Mary Frances McMullin Jean-Jacques Kiladjian Joanne Ewing Adam Mead Murat Arcasoy Valerio De Stefanno Elliot Winton Alessandro Vannucchi Claire Harrison Damiano Rondelli **Rose Catchatorian** Abdulraheem Yacoub **Josef Prchal** Andrea Bacigalupo Casey O'Connell **Richard F. Schlenk** Dmitry Berenzon, Arnon Nagler **Richard Silver** Craig Kessler Ellen Ritchie Alessandro Rambaldi Gabriela Hobbs David Liebowitz




Mount The Tisch Cancer Institute Sinai

BACK UP

Therapeutic Hypothesis

Treatment with a TGF- β inhibitor may treat PMF by providing proliferative advantage to healthy HSC in the marrow and preventing formation of myelofibrosis-HSC supporting niches in the spleen

Ruxolitinib based combination therapy: Setting a higher standard for success?

- Greater spleen reduction
- Greater symptom improvement
- Improvement in disease related cytopenias
- Deeper molecular responses
- Bone marrow morphologic responses
- IWG-MRT/ELN response criteria